欢迎来到公海555000-首页

王瀚艺
作者: 佚名 发布时间: 2022年06月08日 15:27 浏览次数:

王瀚艺

职称职务

教授、博士生导师


 

 

 

Email

hanyi.wang@cqu.edu.cn

联系地址

重庆市沙坪坝区沙正街174
 
重庆大学A区资源及环境科学学院/400030

研究方向

非常规油气开采、水力压裂、压裂评价诊断及相关设备,生产智能监测诊断,地下储能及相关设备,地热能开发及相关设备。

本团队正在招聘弘深青年教师(年薪30-40万),欢迎相关专业背景的优秀人才加入。

个人简历

王瀚艺,教授、博士生导师,获国家海外高层次人才项目资助。博士毕业于美国石油工程专业排名第一的德克萨斯大学奥斯汀分校石油与地质科学系。在研究生和博士阶段分别师从现代储层改造理论奠基人Michael J. Economides和美国工程院院士Mukul Sharma(博士答辩委员会成员还包括美国斯坦福大学客座教授,美国ResFrac公司首席执行官Mark McClure和美国康菲石油公司全球首席工程师 Dave Cramer)。拥有多年的海外工作经验,曾就职于斯伦贝谢等跨国公司,长期从事非常规地质能源(页岩油气、煤层气、致密油气、地热)开采技术和水力压裂研究。参与了美国多个盆地的页岩油气工程和科研项目,以及美国能源部主导的HFTS大型现场论证项目。(截至到202410月)相关成果在国际权威期刊和SPE顶级会议发表论文50余篇,总引用超过2000+, H因子24,授权美国发明专利2项。2篇论文被评为ESI高被引论文,1篇论文获得美国岩石力学协会(American Rock Mechanics Association)最佳论文奖。发表论文被石油天然气行业最具影响力的商业月刊《Journal of Petroleum Technology》多次报导。发表论文被美国斯坦福大学教授、美国工程院院士Mark Zoback 院士主讲的网上公开课《Unconventional   Reservoir Geomechanics》详细讨论。美国工程院院士Derek Elsworth、美国工程院院士Akhil Datta-Gupta、美国工程院院士Christine   Ehlig-Economides、美国工程院院士张东晓和中国工程院院士李根生都在发表论文中引用和肯定了王瀚艺教授的相关研究工作。

代表性研究项目

1. 国家海外高层次人才引进项目,2022-2025,主持;

2. 美国鹰堡盆地页岩凝析气产量瞬态分析研究,2019-2020,主持

3. 美国能源部水力压裂HFTS1大型现场实验论证项目,2016-2019,参与;

4. 美国马塞勒斯和尤蒂卡页岩气开采项目,2018-2019,参与;

5. 美国巴肯盆地页岩油小型压裂设计和分析,2017-2018,主持;

6. 美国德州二叠纪盆地页岩油压降和回流建模与分析,2016-2017,主持;

7. 巴西桑托斯盆地盐下油田井壁稳定性研究,2013-2015 主持

8. 澳大利亚煤层气注热提高采收率研究,2013-2014,主持;

9. 四川盆地页岩气水平井随钻测量/测井, 2010-2012, 参与

 

代表性获奖

美国岩石力学协会(American Rock   Mechanics Association)最佳论文奖(best paper award

代表性专利

System and Method for Improving   Integrity of Cased Wellbores. US 16693224

Systems and Methods for Estimating   Hydraulic Fracture Surface Area. US 10982535

代表性论文

谷歌学术主页:https://scholar.google.com/citations?user=FaUobqMAAAAJ&hl=en  

代表性期刊论文

[1] Yang, Z. Wang, H. Sharma, M. Madeci, E. 2024. A fault activation-shearing-sliding   peridynamic model exploring the role of static and kinetic frictional   contacts. International   Journal of Rock Mechanics and Mining Sciences, Vol(183):105946. https://doi.org/10.1016/j.ijrmms.2024.105946

[2] Yang, Z. Wang, H. Sharma, M.  2024. A peridynamic   compensated critical energy density criterion for mixed-mode fracturing in   quasi-brittle materials. Theoretical and Applied Fracture Mechanics, Vol(134):104736. https://doi.org/10.1016/j.tafmec.2024.104736

[3] Hu. Z, Wang,   H. Zheng, S. 2024.   Numerical Modelling of Energy Storage using Hydraulic Fracturing in Shale   Formations. Geoenergy   Science and Engineering, Vol(242):213424. https://doi.org/10.1016/j.geoen.2024.213424

[4] Hu. Z, Wang,   H. 2024. Feasibility   study of geothermal assisted energy storage using hydraulic fracturing. Geoenergy Science and   Engineering, Vol(242):123220.   https://doi.org/10.1016/j.geoen.2024.213220

[5] Gao, J., Wang, H., and Sharma, M. 2024. Research progress and prospects of CO2   fracturing for developing unconventional energy sources. Geoenergy Science and   Engineering,   213137. https://doi.org/10.1016/j.geoen.2024.213137

[6] Hu. Z, Wang,   H. 2024.   Feasibility study of energy storage using hydraulic fracturing in shale   formations. Applied   Energy, Vol(354):122251.   https://doi.org/10.1016/ j.apenergy.2023.122251

[7] Wang, H. and Sharma, M.M., 2023. Uniquely Determine Fracture Dimension and   Formation Permeability from Diagnostic Fracture Injection Test. Rock Mechanics Bulletin, p.100040.   https://doi.org/10.1016/j.rockmb.2023.100040

[8] Wang, H. 2022. Introduce a Novel   Constant Pressure Injection Test for Estimating Hydraulic Fracture Surface   Area. Journal of Natural Gas Science and Engineering Vol(102)   :104603.. https://doi.org/10.1016/j.jngse.2022.104603

[9] Wang, H., McGowen, H and   Sharma, M.M. 2021, Unified Transient Analysis (UTA) of Production and Shut-in   Data from Hydraulic Fractured Horizontal Wells. Journal of Petroleum Science and Engineering Vol(209):109876.   https://doi.org/10.1016/j.petrol.2021.109876

[10]Wang, H., Elliott, B.M. and   Sharma, M.M. 2021, Pressure Decline Analysis in   Fractured Horizontal Wells: Comparison between Diagnostic Fracture Injection   Test, Flowback, and Main Stage Falloff. SPE Drilling and Completion. 36 (03): 717–729. https://doi.org/10.2118/201672-PA

[11]Wang, H and Sharma, M.M. 2020. A Rapid Injection   Flowback Test (RIFT) to Estimate In-situ Stress and Pore Pressure. Journal of Petroleum Science and   Engineering, Vol(190):107108. https://doi.org/10.1016/j.petrol.2020.107108

[12]Wang, H. 2019. A Non-isothermal Wellbore Model for   High Pressure High Temperature Natural Gas Reservoirs and Its Application in   Mitigating Wax Deposition. Journal of   Natural Gas Science and Engineering, Vol(72):103016.   https://doi.org/10.1016/j.jngse.2019.103016

[13]Wang,   H. 2019. Hydraulic Fracture   Propagation in Naturally Fractured Reservoirs: Complex Fracture or Fracture   Networks. Journal of Natural Gas   Science and Engineering, Vol(68): 102911.   https://doi.org/10.1016/j.jngse.2019.102911

[14]Wang,   H and Sharma, M.M. 2019.   Determine in-situ Stress and Characterize Complex Fractures in Naturally   Fractured Reservoirs with Diagnostic Fracture Injection Tests. Rock Mechanics and Rock Engineering, 52(12):5025-5045. https://doi.org/10.1007/s00603-019-01793-w

[15]Wang,   H and Sharma, M.M. 2019. A   Novel Approach for Estimating Formation Permeability and Revisit   After-closure Analysis of Diagnostic Fracture Injection Tests. SPE Journal, 24(04):1809-1829.   http://doi.org/10.2118/ 194344-PA

[16]Zhou, X., Yuan, Q., Rui, Z., Wang, H., Feng, J., Zhang, L. and Zeng, F., 2019. Feasibility   study of CO2 huff'n'puff process to enhance heavy oil recovery via long core   experiments. Applied Energy,   Vol(236):526-539. https://doi.org/10.1016/j.apenergy.2018.12.007

[17]Zhou, X., Yuan, Q., Zhang, Y., Wang, H., Zeng, F. and Zhang, L., 2019. Performance evaluation of   CO2 flooding process in tight oil reservoir via experimental and   numerical simulation studies. Fuel, Vol(236):730-746.   https://doi.org/10.1016/j.fuel.2018.09.035

[18]Wang,   H and Sharma, M.M. 2018.   Estimating Unpropped-Fracture Conductivity and Fracture Compliance from   Diagnostic Fracture-Injection Tests. SPE   Journal, 23(05):1648-1668. http://dx.doi.org/10.2118/ 189844-PA

[19]Mirani, A., Marongiu-Porcu, M., Wang, H. and Enkababian, P., 2018.   Production-pressure-drawdown management for fractured horizontal wells in   shale-gas formations. SPE   Reservoir Evaluation & Engineering, 21(03):550-565.   https://doi.org/10.2118/181365-PA

[20]Wang,   H and Sharma, M.M. 2018.   Modelling of Hydraulic Fracture Closure on Proppants with Proppant Settling. Journal of Petroleum Science and   Engineering, Vol(171):636-645.   https://doi.org/10.1016/j.petrol.2018.07.067

[21]Wang,   H. 2018. Discrete Fracture   Networks Modeling of Shale Gas Production and Revisit Rate Transient Analysis   in Heterogeneous Fractured Reservoirs. Journal   of Petroleum Science and Engineering, Vol (169):796-812.   https://doi.org/10.1016/j.petrol.2018.05.029

[22]Wang,   H., Yi,S., and Sharma,   M.M. 2018. A Computationally Efficient   Approach to Modeling Contact Problems and Fracture Closure Using Superposition Method. Theoretical and Applied   Fracture Mechanics, Vol(93): 276-287.   https://doi.org/10.1016/j.tafmec.2017.09.009

[23]Wang,   H and Sharma, M.M. 2017. A   Non-Local Model for Fracture Closure on Rough Fracture Faces and Asperities. Journal of Petroleum Science and   Engineering, Vol (154):425-437. http://dx.doi.org/   10.1016/j.petrol.2017.04.024

[24]Wang,   H. 2017, A Numerical Study of   Thermal-Hydraulic-Mechanical Simulation with the Application of Thermal   Recovery in Fractured Shale Gas Reservoirs. SPE Reservoir Evaluation & Engineering , 20(03): 513-531.   http://dx.doi.org/10.2118/ 183637-PA

[25]Wang,   H. 2017. What Factors Control   Shale Gas Production and Production Decline Trend in Fractured Systems: A   Comprehensive Analysis and Investigation. SPE Journal, Vol 22(02): 562-581.   http://dx.doi.org/10.2118/179967-PA

[26]Wang, H. and Samuel, R. 2016, 3D Geomechanical   Modeling of Salt Creep Behavior on Wellbore Casing for Pre-Salt Reservoirs. SPE Drilling & Completion,   31(04):261-272. http://dx.doi.org/10.2118/166144-PA

[27] Wang, H.   2016. Numerical Investigation of Fracture Spacing and Sequencing Effects on   Multiple Hydraulic Fracture Interference and Coalescence in Brittle and   Ductile Reservoir Rocks. Engineering   Fracture Mechanics, Vol (157): 107-124.   http://dx.doi.org/10.1016/j.engfracmech.
  2016.02.025

[28] Wang, H. 2016.   Poro-Elasto-Plastic Modeling of Complex Hydraulic Fracture Propagation:   Simultaneous Multi-Fracturing and Producing Well Interference. Acta Mechanica, 227(2):507-525.   http://dx.doi.org/10.1007/s00707-015-1455-7

[29] Wang, H.,   Marongiu-Porcu, M., and Economides, M. J. 2016. Poroelastic and Poroplastic   Modeling of Hydraulic Fracturing in Brittle and Ductile Formations, SPE Production & Operations,   31(01): 47–59. http://dx.doi.org/10.2118/168600-PA

[30] Wang,   H. and Marongiu-Porcu, M. 2015. Impact of Shale Gas Apparent Permeability   on Production: Combined Effects of Non-Darcy Flow/Gas-Slippage, Desorption   and Geomechanics. SPE Reservoir   Evaluation & Engineering, 18 (04): 495-507.   http://dx.doi.org/10.2118/173196-PA

[31] Wang, H.   2015. Numerical Modeling of Non-Planar Hydraulic Fracture Propagation in   Brittle and Ductile Rocks using XFEM with Cohesive Zone Method. Journal of Petroleum Science and   Engineering, Vol (135):127-140.   http://dx.doi.org/10.1016/j.petrol.2015.08.010

[32] Wang, H., Ajao, O., and Economides, M. J. 2014. Conceptual Study   of Thermal Stimulation in Shale Gas Formations. Journal of Natural Gas Science and Engineering, Vol (21):   874-885. http://dx.doi.org/   10.1016/j.jngse.2014.10.015

[33] He, S., Zou, Y., Quan, D. and Wang, H., 2012. Application of RBF neural network and ANFIS on   the prediction of corrosion rate of pipeline steel in soil. Lecture Notes in Electrical Engineering.   Springer, Berlin, Heidelberg. Page 639-644. http://dx.doi.org/   10.1007/978-3-642-25781-0_93

[34] Wang, H and   He, S. 2010. Genetic Algorism   Solving Globe Optimal Problems of Multi-peak RBF Neural Network Model Based   on MATLAB. Microcomputer and Its Applications.   Vol (13): 3-6. http://dx.doi.org/10.3969/j.issn.1674-7720.2010.13.002

代表性会议论文

[35]Wang, H., and Sharma, M.M. 2021. Unified   Pressure and Rate Transient Analysis for Production and Shut-in of Fractured   Horizontal Wells. Paper SPE 204136 presented at the SPE Hydraulic Fracturing   Technology Conference and Exhibition, The Woodlands, Texas, 4 - 6 May.   http://dx.doi.org/10.2118/ 204136 -MS.

[36]Wang, H., Elliott, B.M. and Sharma,   M.M. 2020. Estimating Reservoir and Fracture Properties from Stage-by-stage   Pressure Decline Analysis in Horizontal Wells. Paper SPE 201672 presented at   the SPE Annual   Technical Conference and Exhibition, Denver, Colorado, 27-29 October.   http://dx.doi.org/10.2118/201672-MS.

[37]Zheng, S., Manchanda, R., Wang, H. and Sharma, M.M. 2020. DFIT   Analysis and Interpretation in Layered Rocks. Paper SPE 199690 presented at   the SPE   Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, 4 - 6   Feb. http://dx.doi.org/10.2118/ 199690-MS.

[38]Wang, H and Sharma, M.M.   2020. A Rapid Injection Flow-back Test (RIFT) To Estimate In-situ Stress and   Pore Pressure in A Single Test. Paper SPE 199732 presented at the SPE   Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands,   Texas, 4 - 6 Feb. http://dx.doi.org/10.2118/ 199732-MS.

[39]Zheng, S., Manchanda, R., Wang, H.   and Sharma, M., 2019, July. Fully 3-D Simulation of Diagnostic Fracture   Injection Tests with Application in Depleted Reservoirs. Paper presented at   the Unconventional   Resources Technology Conference, Denver, Colorado, 22-24 July. https://doi.org/10.15530/urtec-2019-314

[40]Wang, H and Sharma, M.M.   2019. A Novel Approach for Estimating Formation Permeability and Revisit   After-Closure Analysis from DFIT. Paper SPE 194344 presented at the SPE   Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands,   Texas, 5-7 Feb. http://dx.doi.org/10.2118/ 194344-MS.

[41]Wang, H and Sharma, M.M.   2018. Estimating Fracture Closure Stress in Naturally Fractured Reservoirs   with Diagnostic Fracture Injection Tests. Paper ARMA-2018-225 presented at   the 52nd US Rock Mechanics / Geomechanics Symposium, held   in Seattle, Washington, June 17-20.

[42]Wang, H and Sharma, M.M.   2018. Estimating Unpropped Fracture Conductivity and Compliance from   Diagnostic Fracture Injection Tests. Paper SPE 189844 presented at the SPE   Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands,   Texas, 23 - 25 Jan. http://dx.doi.org/10.2118/ 189844-MS.

[43]Wang, H and Sharma, M.M. 2017. New Variable Compliance Method for   Estimating Closure Stress and Fracture Compliance from DFIT data. Paper SPE   187348 presented at the SPE Annual Technical Conference and Exhibition   held in San Antonio, TX, USA, 09 – 11 October. http://dx.doi.org/10.2118/   187348-MS

[44]Mirani,   A., Marongiu-Porcu, M., Wang, H.,   and Philippe, E. 2016. Production Pressure Drawdown Management for Fractured   Horizontal Wells in Shale Gas Formations. Paper SPE 181365 will be presented   at the SPE Annual Technical Conference and Exhibition held in Dubai, UAE,   26-28 Sep. http://dx.doi.org/10.2118/181365-MS

[45]Wang, H. 2016. What   Factors Control Shale Gas Production Decline Trend: A Comprehensive Analysis   and Investigation. Paper SPE-179967-MS presented at the SPE/IAEE   Hydrocarbon Economics and Evaluation Symposium, held at Houston, Texas,   17-18 May. http://dx.doi.org/10.2118/   179967-MS

[46]Samuel,   R & Wang, H. 2015, Optimized   Centralizer Placement for Pre-Salt Formation. Paper OTC 26092 presented at   the Offshore Technology Conference held in Rio de Janeiro, Brazil, 27–29   October. http://dx.doi.org/10.4043/26092-MS

[47]Wang, H., Merry, H.,   Amorer, G. & Kong, B. 2015. Enhance Hydraulic Fractured Coalbed Methane   Recovery by Thermal Stimulation. Paper SPE 175927 presented at the SPE Unconventional   Resources Conference to be held in Calgary, Alberta, Canada 20–22 Oct. http://dx.doi.org/10.2118/175927-MS

[48]Yue, L.,Wang, H., Suai, H., & Nikolaou,   M. 2015. Increasing Shale Gas Recovery through Thermal Stimulation: Analysis   and an Experimental Study. Paper SPE 175070 presented at the SPE Annual   Technical Conference and Exhibition held in Houston, Texas, USA, 28-30   Sep. http://dx.doi.org/10.2118/175070-MS

[49]Wang, H. &   Marongiu-Porcu, M. 2015. A Unified Model of Matrix Permeability in Shale Gas Formations.   Paper SPE 173196 presented at the SPE Reservoir Simulation Symposium,   held in Houston, Texas, USA, 23-25 Feb. http://dx.doi.org/10.2118/173196-MS

[50] Wang, H., Kumar, A., & Samuel, R. 2014. Geomechanical Modeling of Wellbore Stability in Anisotropic Salt   Formation. Paper SPE 169458 presented at the SPE Latin American and   Caribbean Petroleum Engineering Conference held in Maracaibo, Venezuela,   21–23 May. http://dx.doi.org/10.2118/169458-MS

[51] Wang, H., Marongiu-Porcu, M., &   Economides, M. J. 2014. Poroelastic v.s Poroplastic Modeling of Hydraulic   Fracturing. Paper SPE 168600 presented at the SPE Hydraulic Fracturing   Technology Conference held in The Woodlands, Texas, USA, 4–6 February. http://dx.doi.org/10.2118/168600-MS

[52] Wang, H., & Samuel, R. 2013, Geomechanical   Modeling of Wellbore Stability in Salt Formation. Paper SPE 116114 presented   at the SPE Annual Technical Conference and Exhibition held in New   Orleans, Louisiana, USA, 30 September–2 October. http://dx.doi.org/10.2118/166144-MS

[53] Wang, H., and He, S. 2010. Predict Pipeline Steel Soil Corrosion   Rate Using Adaptive Neuro-Fuzzy Inference System. Proceeding of Computational   and Information Sciences, Dec. 2010, pp.1045-1048. http://dx.doi.org/ 10.1109/ICCIS.2010.258

 

版权所有©重庆大学资源与安全学院 
Baidu
sogou